The decays of a neutral particle with zero spin and arbitrary CP parity into ZZ or $W^- W^+$

Taras Zagoskin

Kharkov Institute of Physics and Technology,
Kharkov, Ukraine

June 27, 2015
Introduction

- In 2012 the ATLAS and CMS collaborations observed a boson h with the mass around 126 GeV. We call this particle the Higgs boson. However, clarification of properties of the observed boson h requires more data.

\[q_h = 0 \]

\[S_h = 0 \text{ or } S_h = 2 \text{ (very unlikely)} \]

\[CP_h =? \]

- In the SM for the Higgs boson

\[q = 0, S = 0, C = P = 1, \]

but some supersymmetric extensions of the SM assume existence of Higgs bosons with negative or indefinite CP parity.
Plan of the investigation

In order to clarify the \(CP \) properties of \(h \) the following way has been chosen.

- We consider the decay \(X \rightarrow Z_1^*Z_2^* \rightarrow f_1\bar{f}_1f_2\bar{f}_2 \), where \(X \) is a neutral particle with zero spin and arbitrary \(CP \) parity, \(f_1 \neq f_2 \).
Plan of the investigation

\[A_{X \rightarrow Z_1^* Z_2^*} \sim a(e_1^* \cdot e_2^*) + \frac{b}{m_X^2} (e_1^* \cdot p_2)(e_2^* \cdot p_1) + i \frac{c}{m_X^2} \varepsilon_{\mu
u\rho\sigma} (p_1^{\mu} + p_2^{\mu})(p_1^{\nu} - p_2^{\nu}) e_1^{*\rho} e_2^{*\sigma} \]

\(e_1 \) and \(e_2 \) are the polarization 4-vectors of \(Z_1^* \) and \(Z_2^* \) respectively.
\(a, b, c \) are complex-valued functions of the masses of \(Z_1^* \) and \(Z_2^* \). These functions characterize the \(CP \) properties of the boson \(X \). At tree level

<table>
<thead>
<tr>
<th>(CP_X)</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>any</td>
<td>any</td>
<td>0</td>
</tr>
<tr>
<td>1 (SM)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>(\neq 0)</td>
</tr>
<tr>
<td>indefinite</td>
<td>(\neq 0)</td>
<td>any</td>
<td>(\neq 0)</td>
</tr>
<tr>
<td></td>
<td>any</td>
<td>(\neq 0)</td>
<td>(\neq 0)</td>
</tr>
</tbody>
</table>

- We derive the full distribution of the decay \(X \rightarrow Z_1^* Z_2^* \rightarrow f_1 \bar{f}_1 f_2 \bar{f}_2 \).
- Experimentalists measure an experimental full distribution of this decay for \(X = h \).
- Comparing the theoretical and experimental distributions, one can get constraints on the values of \(a, b, c \) at various masses of \(Z_1^* \) and \(Z_2^* \).
Definitions of θ_1, θ_2, φ

θ_1 is the angle between the momentum of Z_1^* in a rest frame of X and the momentum of f_1 in a rest frame of Z_1^*,

θ_2 is the angle between the momentum of Z_2^* in a rest frame of X and the momentum of f_2 in a rest frame of Z_2^*,

φ is the azimuthal angle between the planes of the decays $Z_1^* \rightarrow f_1 \bar{f}_1$ and $Z_2^* \rightarrow f_2 \bar{f}_2$.
Definitions of A_0, $A_∥$, $A_⊥$

Moreover, it is convenient to write down the fully differential width by means of the following amplitudes:

$$A_0 \equiv -\left(a \frac{m_X^2 - a_1 - a_2}{2\sqrt{a_1a_2}} + b \frac{\lambda(m_X^2, a_1, a_2)}{4m_X^2 \sqrt{a_1a_2}} \right),$$

$$A_∥ \equiv \sqrt{2}a,$$

$$A_⊥ \equiv \sqrt{2}c \frac{\lambda^{\frac{1}{2}}(m_X^2, a_1, a_2)}{m_X^2}.$$

a_j is the mass squared of Z_j^*, i.e. the invariant mass of the pair $f_j\bar{f}_j$, $\lambda(x, y, z) \equiv x^2 + y^2 + z^2 - 2xy - 2xz - 2yz.$
The differential width with respect to a_1, a_2, θ_1, θ_2, φ

Using approximations $m_{f_1} = m_{f_2} = 0$, we have derived that

$$d^5\Gamma \over da_1 da_2 d\theta_1 d\theta_2 d\varphi = |A_0|^2 f_1 + (|A_\parallel|^2 + |A_\perp|^2) f_2 + (|A_\parallel|^2 - |A_\perp|^2) f_3$$

$$+ \text{Re}(A_0^* A_\parallel) f_4 + \text{Re}(A_0^* A_\perp) f_5 + \text{Re}(A_\parallel^* A_\perp) f_6$$

$$+ \text{Im}(A_0^* A_\parallel) f_7 + \text{Im}(A_0^* A_\perp) f_8 + \text{Im}(A_\parallel^* A_\perp) f_9.$$

f_1, f_2, ..., f_9 depend on a_1, a_2, θ_1, θ_2, φ, but they are independent of a, b and c.

The dependence of the fully differential width on the couplings a, b and c is concentrated in nine quadratic combinations of the amplitudes A_0, A_\parallel, A_\perp.

How many decays should be measured for obtaining a precise enough experimental full distribution of the decay?

$$d^n\Gamma \leftrightarrow 10^{n+1} \text{ decays}$$

$$d^5\Gamma \leftrightarrow 10^6 \text{ decays}$$

How many decays have been observed?

$$h \rightarrow Z_1^* Z_2^* \rightarrow e^- e^+ \mu^- \mu^+$$

26 decays (ATLAS and CMS together after about 1.5 years of measurements)
Distributions of four and less variables should be considered.

We will probably have a precise enough experimental full distribution in 60000 years (roughly).

That is why we should try to get constraints on a, b, c by means of measuring distributions of as little a number of variables as possible.
$a_1 a_2$-differential width

Figure: $\frac{d^2\Gamma}{da_1 da_2}$ of the decay $X \rightarrow Z_1^* Z_2^* \rightarrow l_1^- l_1^+ l_2^- l_2^+$ as a function of $\sqrt{a_1}$, $\sqrt{a_2}$, if X is the SM Higgs boson and $m_X = 125.7$ GeV. $l_1, l_2 = e, \mu, \tau, l_1 \neq l_2$.

\[
\frac{d^2 \Gamma (a_1, a_2)}{da_1 da_2} \times 10^{-14} \frac{1}{\text{GeV}^3}; \quad |a_1| = 1, b = 0, c = 0
\]
Integrating $\frac{d^2\Gamma}{da_1 da_2}$ approximately, we derive that

$$d\Gamma \approx \frac{\sqrt{2} G_F^3 m_Z^9}{288 \pi^4 m_X^3 \Gamma_Z} (a_f^2 + v_f^2) (a_2^2 + v_2^2) \frac{\lambda^2 (m_X^2, m_Z^2, a_2) a_2}{(a_2 - m_Z^2)^2 + (m_Z \Gamma_Z)^2} \sum_{\lambda=0,||,\perp} |A'_\lambda|^2$$

$$\forall a_2 \mid 2m_f < \sqrt{a_2} \leq m_X - \sqrt{m_Z^2 + 3m_Z \Gamma_Z}.$$

a_f and v_f are constants depending on a fermion f, $A'_\lambda \equiv A_\lambda \mid_{a_1=m_Z^2}$. In several articles the formula for $\frac{d\Gamma}{da_2}$ has been used in the narrow-Z-width approximation when

$$\sqrt{a_2} \leq m_X - m_Z,$$

and their approach is inaccurate.

$$m_h - \sqrt{m_Z^2 + 3m_Z \Gamma_Z} \approx 30.8 \text{ GeV}$$
$$m_h - m_Z \approx 34.5 \text{ GeV}$$
We call the ratios of the nine quadratic combinations of the fully differential width to $\sum_{\lambda=0,\|,\perp} |A_{\lambda}|^2$ ‘the helicity coefficients’. Integrating $\frac{d^5 \Gamma}{da_1 da_2 d\theta_1 d\theta_2 d\varphi}$, we can relate all the helicity coefficients to observables. For example,

\[
O_{1}^{(1,2)}(a_2) \equiv \left(\frac{d\Gamma}{da_2} \right)^{-1} \left(\int_0^{\frac{\pi}{2}} d\theta_1,2 \frac{d^2 \Gamma}{da_2 d\theta_1,2} - \int_{\frac{\pi}{2}}^{\pi} d\theta_1,2 \frac{d^2 \Gamma}{da_2 d\theta_1,2} \right) \sim \frac{\text{Re}(A'_\|A'_\perp)}{\sum_{\lambda} |A'_{\lambda}|^2} = \text{Re}(F'_\|F'_\perp).
\]

\[
F'_\lambda \equiv \frac{A'_{\lambda}}{\sqrt{\sum_{\lambda} |A_{\lambda}|^2}}, \quad \lambda = 0, \|, \perp.
\]
Relations between the helicity coefficients and observables

\[
\begin{align*}
O_1^{(1,2)}(a_2) & \sim \Re(F_\parallel' F_\perp') \\
O_2^{(1,2)}(a_2) & \sim |F_0'|^2 \\
O_3(a_2) & \sim |F'|^2 + |F_\perp'|^2 \\
O_4(a_2) & \sim |F'|^2 - |F_\perp'|^2 \\
O_5(a_2) & \sim \Im(F_\parallel' F_\perp') \\
O_6(a_2) & \sim \Re(F_0' F_\parallel') \\
O_7^{(1,2)}(a_2) & \sim \Im(F_0' F_\parallel') \\
O_8^{(1,2)}(a_2) & \sim \Re(F_0' F_\perp') \\
O_9(a_2) & \sim \Im(F_0' F_\perp')
\end{align*}
\]

\[
\rightarrow \text{Constraints on } a, b, c
\]
Conclusions

• In order to clarify the CP properties of the Higgs boson we have considered the fully mass and angular differential width of the decay $X \rightarrow Z_1^* Z_2^* \rightarrow f_1 \bar{f}_1 f_2 \bar{f}_2$, where X is a neutral particle with zero spin and arbitrary CP parity, $f_1 \neq f_2$.

• Limits of applicability of approximations used when deriving various differential widths are established.

• All the helicity coefficients are related to observables. We have also plotted the observables and determined what constraints on a, b, c can be put by them.

• We should wait for experimentalists measuring the observables $O_1^{(1,2)}$, O_2, ..., O_9 and then get constraints on a, b, c using the shown relations between F'_0, F'_\parallel, F'_\perp and $O_1^{(1,2)}$, ..., O_9.

• An analogous analysis has been carried out for the decay $X \rightarrow W^- W^+ \rightarrow f_1 - \bar{f}_2 - \bar{f}_1 + f_2$.

The presentation is based on the paper Zagoskin and Korchin, arXiv:1504.07187.