

"Analogue" relativity in condensed matter

Relativistic energy: \(E = \sqrt{\left(\hbar c k\right)^2 + (mc^2)^2} \)

If \(m \) finite

<table>
<thead>
<tr>
<th>Case</th>
<th>bare mass</th>
<th>effective mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semiconductors</td>
<td>(\epsilon_0 = \hbar c</td>
<td>k</td>
</tr>
<tr>
<td>Massless case</td>
<td>(\epsilon_0 = \hbar c</td>
<td>k</td>
</tr>
</tbody>
</table>

Due to the interaction of the electrons with the lattice atoms, usually \(m \) is finite. In graphene it actually vanishes.

Graphene

The corresponding Dirac equations are mapped to each other by parity: around the \(K \)-point the pseudospin directions are just opposite to the \(K' \)-point. For \(\gamma \) this could be reproduced by a parity mapping the two supergravity Chern-Simons theories of the Achucarro-Townsend formulation into each other.

The reciprocal lattice of graphene is also a honeycomb lattice, featuring two inequivalent types of Dirac points: \(K \) and \(K' \).

The graphene Dirac cone

The electron band structure of graphene

At the Dirac points (for a range of 1eV) the spectrum is linear: \(E \sim \pm \hbar c |k| \) where

\(m \) is the bare mass and \(v_F \) is the Fermi velocity.

\(m \) = 11 supergravity. By studying a self-duality condition \(K_3 \mid K_4 \rangle \rangle \langle \eta \mid K_3 \rangle \rangle \) of the AdS3 boundary, starting from \(V^T \rightarrow 2 \) pure supergravity theory in the AdS3 bulk.

This top-down approach to graphene is more predictive than the more common bottom-up one, because it is constrained from the properties of the \(Z = 3 \rightarrow 1 \) supergravity theory.

BRST quantization: We have explained the relation between the propagating spinor in the AVZ model and the supersymmetry parameter as a particular unconventional gauge-fixing of a Chern-Simons theory in the framework of a BRST quantization. Indeed, supergravity in \(D = 3 \) is topological, and coincides with difference of two \(\tilde{\gamma} \) Chern-Simons forms. The corresponding Dirac equation is:

\(\gamma \partial \gamma = \frac{1}{2} \epsilon_0 \sqrt{\left(\hbar c k\right)^2 + (mc^2)^2} \)