Protecting electroweak vacuum from New Physics destabilization

Filippo Contino

University of Catania - Physics Department “Ettore Majorana”

New Talents, 22-06-2019
Solving RG equations for the SM couplings, we obtain the RG improved effective potential:

$$V_{\text{eff}}(\phi) \sim \frac{1}{4} \lambda_{\text{eff}}(\phi) \phi^4$$

where $\lambda_{\text{eff}}(\phi)$ is the running coupling $\lambda(\mu)$ with $\mu = \phi$, obtained by running the system of RG equation of the SM couplings.
We have the formation of a second minimum $\phi_{min}^{(2)}$.

For the SM, where $M_H \sim 125\text{ GeV}$ and $M_t \sim 173\text{ GeV}$, this second minimum is lower than the EW vacuum \Rightarrow We have to calculate the EW vacuum lifetime τ.
RG Improved Effective Potential

We have the formation of a second minimum $\phi_{\text{min}}^{(2)}$.

For the SM, where $M_H \sim 125\,\text{GeV}$ and $M_t \sim 173\,\text{GeV}$, this second minimum is lower than the EW vacuum \Rightarrow We have to calculate the EW vacuum lifetime τ.

\[V_{\text{eff}}(\phi) \]

\[\phi \]

\[\text{EW} \]

\[\text{New Minimum} \]
We have the formation of a second minimum $\phi^{(2)}_{\text{min}}$.

For the SM, where $M_H \sim 125 \text{ GeV}$ and $M_t \sim 173 \text{ GeV}$, this second minimum is lower than the EW vacuum \Rightarrow We have to calculate the EW vacuum lifetime τ.
Bounce solution in flat spacetime

- Euclidean action for a single component real scalar field \(\phi \):
 \[
 S[\phi] = \int d^4x \left[\frac{1}{2} (\partial_\mu \phi)^2 + V(\phi) \right]
 \]
 where \(V(\phi) \) is a potential with a false vacuum \(\phi = \phi_{fv} \) and a true vacuum \(\phi = \phi_{tv} \).

- The bounce solution \(\phi_b(r) \) is a particular solution to the Euclidean Euler-Lagrange equation with \(O(4) \) symmetry. If \(r \) is the radial coordinate, the equation takes the form:
 \[
 \dddot{\phi}(r) + \frac{3}{r} \ddot{\phi}(r) = \frac{dV}{d\phi}
 \]
 The bounce solution is obtained imposing the boundary conditions:
 \[
 \phi(\infty) = \phi_{fv}, \quad \dot{\phi}(0) = 0
 \]
Bounce solution in flat spacetime

- Euclidean action for a single component real scalar field ϕ:

$$S[\phi] = \int d^4x \left[\frac{1}{2} (\partial_{\mu} \phi)^2 + V(\phi) \right]$$

where $V(\phi)$ is a potential with a false vacuum $\phi = \phi_{fv}$ and a true vacuum $\phi = \phi_{tv}$.

- The bounce solution $\phi_b(r)$ is a particular solution to the Euclidean Euler-Lagrange equation with $O(4)$ symmetry. If r is the radial coordinate, the equation takes the form:

$$\ddot{\phi}(r) + \frac{3}{r} \dot{\phi}(r) = \frac{dV}{d\phi}$$

The bounce solution is obtained imposing the boundary conditions:

$$\phi(\infty) = \phi_{fv} \quad \dot{\phi}(0) = 0$$
Bounce solution in SM - flat spacetime
Decay rate of the false vacuum

- Decay time of the false vacuum:

\[\Gamma = \frac{1}{\tau} = De^{-\left(S[\phi_b] - S[\phi_{fv}]\right)} \equiv De^{-B} \]

where \(B = S[\phi_b] - S[\phi_{fv}] \) is called Tunneling Exponent, and the exponential of \(-B\) gives the “tree-level” contribution to the decay rate. Instead, \(D \) is the quantum fluctuation determinant.

- Good approximation to the prefactor \(D \). The EW vacuum tunneling time \(\tau = \Gamma^{-1} \) turns out to be:

\[\tau \approx \left(\frac{R^4}{T^3_U} \right) e^{-B} \Rightarrow \tau_{flat} \sim 10^{639} T_U \]

where \(R \) is the size of the bounce, defined as the value of \(r \) such that \(\phi_b(R) = \frac{1}{2} \phi_b(0) \).
Decay rate of the false vacuum

- Decay time of the false vacuum:

\[\Gamma = \frac{1}{\tau} = D e^{-(S[\phi_b] - S[\phi_{fv}])} = D e^{-B} \]

where \(B = S[\phi_b] - S[\phi_{fv}] \) is called Tunneling Exponent, and the exponential of \(-B\) gives the “tree-level” contribution to the decay rate. Instead, \(D \) is the quantum fluctuation determinant.

- Good approximation to the prefactor \(D \). The EW vacuum tunneling time \(\tau = \Gamma^{-1} \) turns out to be:

\[\tau \simeq \left(\frac{\mathcal{R}^4}{T_U^3} \right) e^{-B} \Rightarrow \tau_{\text{flat}} \sim 10^{639} T_U \]

where \(\mathcal{R} \) is the size of the bounce, defined as the value of \(r \) such that \(\phi_b(\mathcal{R}) = \frac{1}{2} \phi_b(0) \).
Bounce solution in curved spacetime

- Euclidean action for a single component real scalar field ϕ:

$$S[\phi, g_{\mu\nu}] = \int d^4x \sqrt{g} \left[-\frac{R}{16\pi G} + \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + V(\phi) \right]$$

where R is the Ricci scalar and G is the Newton constant. Requiring again $O(4)$ symmetry, the (Euclidean) metric takes the form:

$$ds^2 = dr^2 + \rho^2(r)d\Omega_3^2$$

- The bounce solution is now given by $\phi_b(r)$ and $\rho_b(r)$, solutions of the coupled equations:

$$\ddot{\phi} + 3 \frac{\dot{\rho}}{\rho} \dot{\phi} = \frac{dV}{d\phi} \quad \dot{\rho}^2 = 1 + \frac{\kappa}{3} \rho^2 \left(\frac{1}{2} \dot{\phi}^2 - V(\phi) \right)$$

The boundary conditions are:

$$\phi(\infty) = \phi_{fv} \quad \dot{\phi}(0) = 0 \quad \rho(0) = 0$$
Bounce solution in curved spacetime

- Euclidean action for a single component real scalar field ϕ:

$$S[\phi, g_{\mu\nu}] = \int d^4x \sqrt{g} \left[-\frac{R}{16\pi G} + \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + V(\phi) \right]$$

where R is the Ricci scalar and G is the Newton constant. Requiring again $O(4)$ symmetry, the (Euclidean) metric takes the form:

$$ds^2 = dr^2 + \rho^2(r) d\Omega_3^2$$

- The bounce solution is now given by $\phi_b(r)$ and $\rho_b(r)$, solutions of the coupled equations:

$$\ddot{\phi} + 3 \frac{\dot{\rho}}{\rho} \dot{\phi} = \frac{dV}{d\phi} \\ \dot{\rho}^2 = 1 + \kappa \frac{\rho^2}{3} \left(\frac{1}{2} \dot{\phi}^2 - V(\phi) \right)$$

The boundary conditions are:

$$\phi(\infty) = \phi_{fv} \\ \dot{\phi}(0) = 0 \\ \rho(0) = 0$$
Bounce solution in SM - curved spacetime

\[\tau_{\text{flat}} \sim 10^{639} T_U \quad \Rightarrow \quad \tau_{\text{grav}} \sim 10^{661} T_U \]

Gravity tends to increase the tunneling time \(\tau \) respect to the flat spacetime background!
Bounce solution in SM - curved spacetime

\[\tau_{\text{flat}} \sim 10^{639} T_U \quad \Rightarrow \quad \tau_{\text{grav}} \sim 10^{661} T_U \]

Gravity tends to increase the tunneling time \(\tau \) respect to the flat spacetime background!
Bounce solution in SM - curved spacetime

\[
\tau_{\text{flat}} \sim 10^{639} T_U \quad \Rightarrow \quad \tau_{\text{grav}} \sim 10^{661} T_U
\]

Gravity tends to increase the tunneling time \(\tau \) respect to the flat spacetime background!
Let’s add New Physics at the Planck scale

One way of parametrizing New Physics around M_P is using the potential:

$$V(\phi) = V_{\text{eff}}(\phi) + \frac{\lambda_6}{6} \frac{\phi^6}{M_P^2} + \frac{\lambda_8}{8} \frac{\phi^8}{M_P^4}$$

With $\lambda_6 < 0$ and $\lambda_8 > 0$ we describe a destabilizing New Physics.

Example with $\lambda_6 = -1.2$ and $\lambda_8 = 1$.
Blue curve: bounce profile with $\lambda_6 = \lambda_8 = 0$, i.e. with SM alone.
Yellow curve: bounce profile with $\lambda_6 = -0.3$ and $\lambda_8 = 0.3$.
Green curve: bounce profile with $\lambda_6 = -0.01$ and $\lambda_8 = 0.01$.

Bounce solution with New Physics - flat spacetime
Bounce solution with New Physics - curved spacetime

- **Blue curve**: bounce profile with \(\lambda_6 = \lambda_8 = 0 \), i.e. with SM alone.
- **Yellow curve**: bounce profile with \(\lambda_6 = -0.03 \) and \(\lambda_8 = 0.03 \).
- **Green curve**: bounce profile with \(\lambda_6 = -0.04 \) and \(\lambda_8 = 0.04 \).
Impact of New Physics on τ

New bounce $\phi_{b}^{NP}(r) \Rightarrow$ New action $S[\phi_{b}^{NP}(r)] \Rightarrow$ New $\tau \sim e^{S[\phi_{b}^{NP}(r)]}$

<table>
<thead>
<tr>
<th>λ_6</th>
<th>λ_8</th>
<th>τ_{flat}/T_U</th>
<th>τ_{grav}/T_U</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>10^{639}</td>
<td>10^{661}</td>
</tr>
<tr>
<td>-0.15</td>
<td>0.25</td>
<td>10^{186}</td>
<td>10^{512}</td>
</tr>
<tr>
<td>-0.3</td>
<td>0.3</td>
<td>10^{-52}</td>
<td>10^{287}</td>
</tr>
<tr>
<td>-0.45</td>
<td>0.5</td>
<td>10^{-93}</td>
<td>10^{173}</td>
</tr>
<tr>
<td>-0.7</td>
<td>0.6</td>
<td>10^{-162}</td>
<td>10^{47}</td>
</tr>
<tr>
<td>-1.2</td>
<td>1.0</td>
<td>10^{-195}</td>
<td>10^{-58}</td>
</tr>
<tr>
<td>-1.7</td>
<td>1.5</td>
<td>10^{-206}</td>
<td>10^{-106}</td>
</tr>
</tbody>
</table>

Gravity tends to stabilize the EW vacuum (τ_{grav} always higher than τ_{flat}). However, New Physics has always a strong impact.

Stability problem in Standard Model
Computing the tunneling time
New Physics
Conclusions

Including New Physics
Non-minimal coupling to gravity

Stability diagram

100
Curved spacetime. Non-minimal coupling

A. Rajantie, S. Stopyra, PRD 95 (2017) 2, 025008

\[S = \int d^4x \sqrt{-g} \left[-\frac{R}{16\pi G} + \frac{1}{2} g^{\mu\nu} \nabla_\mu \phi \nabla_\nu \phi + V(\phi) + \frac{1}{2} \xi \phi^2 R \right] \]

Again $O(4)$ symmetry:

\[\ddot{\phi} + 3 \frac{\dot{\rho}}{\rho} \dot{\phi} = \frac{dV}{d\phi} + \xi \phi R \quad \dot{\rho}^2 = 1 - \frac{\kappa}{3} \rho^2 \left(-\frac{1}{2} \dot{\phi}^2 + V(\phi) - 6 \xi \frac{\dot{\phi}}{\rho} \phi \dot{\phi} \right) \frac{1}{1 - \kappa \xi \phi^2} \]

with R given by:

\[R = \kappa \frac{\dot{\phi}^2(1 - 6\xi) + 4V(\phi) - 6\xi \phi dV/d\phi}{1 - \kappa \xi (1 - 6\xi) \phi^2} \]

For $\xi = 0$ these equations becomes the minimal coupling ones.
New Physics vs. non-minimal coupling

Adding New Physics: $\lambda_6 = -1.2$ and $\lambda_8 = 1$

<table>
<thead>
<tr>
<th>ξ</th>
<th>$(\tau/T_U)_{SM}$</th>
<th>$(\tau/T_U)_{NP}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-15</td>
<td>10^{736}</td>
<td>10^{736}</td>
</tr>
<tr>
<td>-10</td>
<td>10^{726}</td>
<td>10^{726}</td>
</tr>
<tr>
<td>-5</td>
<td>10^{710}</td>
<td>10^{710}</td>
</tr>
<tr>
<td>-1</td>
<td>10^{684}</td>
<td>10^{680}</td>
</tr>
<tr>
<td>-0.5</td>
<td>10^{677}</td>
<td>10^{600}</td>
</tr>
<tr>
<td>-0.3</td>
<td>10^{672}</td>
<td>10^{358}</td>
</tr>
<tr>
<td>-0.1</td>
<td>10^{666}</td>
<td>10^{65}</td>
</tr>
<tr>
<td>0</td>
<td>10^{661}</td>
<td>10^{-58}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ξ</th>
<th>$(\tau/T_U)_{SM}$</th>
<th>$(\tau/T_U)_{NP}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>10^{660}</td>
<td>10^{-167}</td>
</tr>
<tr>
<td>0.5</td>
<td>10^{668}</td>
<td>10^{23}</td>
</tr>
<tr>
<td>0.7</td>
<td>10^{674}</td>
<td>10^{346}</td>
</tr>
<tr>
<td>0.8</td>
<td>10^{676}</td>
<td>10^{512}</td>
</tr>
<tr>
<td>1</td>
<td>10^{679}</td>
<td>10^{666}</td>
</tr>
<tr>
<td>5</td>
<td>10^{709}</td>
<td>10^{709}</td>
</tr>
<tr>
<td>10</td>
<td>10^{725}</td>
<td>10^{725}</td>
</tr>
<tr>
<td>15</td>
<td>10^{735}</td>
<td>10^{735}</td>
</tr>
</tbody>
</table>

V. Branchina, E. Bentivegna, F. Contino, D. Zappalà, PRD 99 (2019) 9, 096029
The direct Higgs-gravity $\xi \phi^2 R$ provides a rescue against New Physics destabilization: a part a tiny range of values of ξ, we have always $\tau > T_U$.

For sufficiently large values of ξ we have a washing out of New Physics effects: $\tau_{NP} \simeq \tau_{SM}$

New Physics vs. non-minimal coupling

\[\xi = 0 \quad \xi = 1 \quad \xi = 10 \]

V. Branchina, E. Bentivegna, F. Contino, D. Zappalà, PRD 99 (2019) 9, 096029
In both cases, for the range of \(\lambda_6 \) and \(\lambda_8 \) showed, the EW vacuum is always stable \(\tau > T_U \), unlike the minimal coupling case \(\xi = 0 \).
The Higgs-gravity interaction term, whose presence is guaranteed by exceptionally well-known experimental facts (gravity, the Higgs boson, and the quantum nature of physical laws), acts as a universal stabilizing mechanism, that washes out any potentially destabilizing effect from high energy New Physics (for instance from unknown quantum gravity), protecting our universe from a disastrous decay.
Thank you for the attention!